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Abstract

The lattice Boltzmann method (LBM) and electrohydrodynamics are both active subjects in fluid mechanics research

in recent years. In this paper, we present a method to apply a multicomponent LBM to electrohydrodynamics studies. A

series of drop deformation simulations under the influence of an electric field were carried out and the results are in

good agreement with other theoretical and experimental studies. Given that no special treatment of fluid–fluid inter-

faces is required for multiphase/multicomponent LBM, our method could be an excellent alternative to electrohydro-

dynamics studies than traditional computational fluid dynamics methods. Further, our algorithm and simulation can be

readily implemented to the more complex electrohydrodynamic systems. To our knowledge, this represents the first

LBM study on electrohydrodynamics.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Electrohydrodynamics (EHD) is the study of fluid motions induced by an applied electric field [1,2]. The

earliest EHD observation can be traced back to the seventeenth century, in which Gilbert showed that a

spherical water drop sitting on a dry surface deformed into a cone when a piece of rubbed amber was

brought above at a given distance [3]. Modern industrial and scientific applications of EHD are abundant,

including ink jet printing, electrostatic painting, boiling and biotechnology [1,4,5].
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EHD deformation of fluid–fluid interfaces, especially the deformation of a drop suspending in a second

fluid, has been studied extensively [2,5–15]. It was Taylor who firstly introduced the well-known leaky

dielectric model [1,2,7]. In this model, fluids are considered to have low conductivities and, when an electric

field is applied, free charge can appear only at the fluid–fluid interfacial region. The leaky dielectric model is

known to provide accurate qualitative and quantitative results [1,16]. Recently, Trau et al. [13] extended
this theory to a diffuse interface and compared its prediction with experiments. Obviously, analytical appli-

cations are limited to simple systems and numerical methods such as a finite element method are usually

required [13,14,17] for more complex systems.

Recently, the lattice Boltzmann method (LBM) has experienced tremendous development in simulating

fluid hydrodynamic behaviors [18,19]. Compared with traditional computational fluid dynamics, LBM

algorithms are much easier to be implemented to complex solid or free boundaries even for multiphase/mul-

ticomponent fluid systems. The attractiveness of LBM for multiphase/multicomponent studies lies in the

fact that, unlike other numerical schemes, no special treatment or attention is required for the fluid–fluid
interfaces [20–22]. In this paper, we employ the leaky dielectric theory with diffuse interfaces according

to Trau et al. [13] and present an LBM scheme to simulate electrohydrodynamic behaviors. As an example,

drop deformation simulations will be conducted and the results will be compared with those from theoret-

ical predictions and experiments. It will be apparent below that the LBM proposed here could be an excel-

lent alternative in future electrohydrodynamics studies.
2. Theory and method

2.1. Interparticle potential LBM model for multicomponent fluid

In this section, a brief review of Shan and Chen�s interparticle potential LBM model [20] will be given as

this model has been widely employed in different multiphase/multicomponent and interfacial situations [23–

28]. Our description will be limited to a D2Q9 (two dimensions, nine lattice velocities) LBM version. In this

model, the following lattice Boltzmann equation is solved for a S-component fluid
f ðkÞ
i ðxþ ei; t þ 1Þ � f ðkÞ

i ðx; tÞ ¼ � f ðkÞ
i ðx; tÞ � �f

ðkÞ
i ðx; tÞ

sðkÞ
; ð1Þ
where f ðkÞ
i ðx; tÞ is the number density distribution of the kth component in the ith lattice velocity direction ei

at position x and time t; s(k) is the relaxation time of the kth component and �f
ðkÞ
i ðx; tÞ is the corresponding

equilibrium distribution given below [29,30]:
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The discrete lattice velocities in the above equations are:
e0 ¼ 0;

ei ¼ cos
i� 1
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In Eq. (2), a(k) is a parameter related to the sound speed cðkÞs in a pure kth component media by

ðcðkÞs Þ2 ¼ 3ð1� aðkÞÞ=5 [27]. The total number density of the kth component n(k) is just the sum of

f ðkÞ
i as nðkÞ ¼

P
if

ðkÞ
i and its mass density q(k) can therefore be easily obtained by multiplying n(k) with

the corresponding molecular mass m(k) as q(k) = m(k)n(k). The velocity of the kth fluid u(k) is defined through

uðkÞ ¼
P

ieif
ðkÞ
i =qðkÞ and the equilibrium velocity �uðkÞ is given by
qðkÞ�uðkÞ ¼ qðkÞu0 þ sðkÞFðkÞ; ð4Þ

where u 0 is a common velocity where an extra component-specific velocity due to interparticle and external

forces F(k) can be added for each component [24]. In our study, F(k) includes both the fluid–fluid interaction

F
ðkÞ
Int and electric force F

ðkÞ
Ele, see below. To conserve momentum at each collision in the absence of F(k), we

express u 0 as follows:
u0 ¼
X
k

qðkÞuðkÞ

sðkÞ

 ! X
k

qðkÞ

sðkÞ

 , !
: ð5Þ
Following the common treatment [24,26,27], we model the fluid–fluid interaction F
ðkÞ
Int as
F
ðkÞ
IntðxÞ ¼ �nðkÞðxÞ

X
x0

X
�k

Gk�kðx; x0Þnð�kÞðx0Þðx0 � xÞ: ð6Þ
By considering the interactions between nearest neighbors with the value gk�k characterizing the interaction
strength, we reduce the above Green�s function Gk�k(x,x

0) to
Gk�kðx; x0Þ ¼
gk�k; j x� x0 j¼ 1;

gk�k=4; j x� x0 j¼
ffiffiffi
2

p
;

0; otherwise:

8><
>: ð7Þ
The Chapman–Enskog method has been applied to the above equations to obtain the continuity and

momentum equations with the fluid velocity u expressed by [31,32]
qu ¼
X
k

qðkÞuðkÞ þ 1

2

X
k

FðkÞ; ð8Þ
where the total fluid mass density is q ¼
P

kq
ðkÞ and the fluid kinematic viscosity is m ¼ ð2

P
kq

ðkÞsðkÞ=
q� 1Þ=6.

2.2. Leaky dielectric theory with diffuse interfaces

In general, the leaky dielectric model consists of the Navier–Stokes equations to describe fluid motion
and an expression for the conservation of current employing an Ohmic conductivity [1,2]. Electric forces

experienced by fluid particles can be expressed as a Maxwell stress tensor or as a body force [33]
FEle ¼ � 1

2
E � Er�þ qE; ð9Þ
where E is the electric field, � is the local fluid permittivity and q is the free charge density given by
q ¼ r � ð�EÞ: ð10Þ

The electric field can be written as the gradient of a scalar potential U
E ¼ �rU ð11Þ
and the charge conservation is governed by [13]
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u � rq ¼ r � ½rrU þ grq�; ð12Þ

where r is the local fluid conductivity and g is the ion diffusivity. As the convective u Æ $q and diffusive
$ Æ [g$q] terms are usually small compared to the conduction term $ Æ [r$U], we have simplified Eq. (12)

by solving the electric potential U as [13]
r � ½rrU � ¼ 0: ð13Þ
2.3. Implementing LBM to EHD

As mentioned above, the influence of an applied electric field to fluid motion is caused by the electric

forces (Maxwell�s stresses) because of non-uniform fluid conductivity, permittivity and/or electric field. A

typical density distribution across an interface of a two-component system from the LBM model described

above is shown in Fig. 1(a). As is typically performed with a one-fluid approximation in liquid mixture

studies [34], we assume the mixture dielectric properties to follow
� ¼ �ð1Þqð1Þ þ �ð2Þqð2Þ;

r ¼ rð1Þqð1Þ þ rð2Þqð2Þ;
ð14Þ
where �(1), �(2), r(1) and r(2) are constants that can be adjusted to produce different bulk property values. As

an example, the variation of conductivity and permittivity from such a model is also displayed in Fig. 1(b).

Clearly, these simple expressions generate smooth increasing/decreasing transitions across an interface from

one bulk value to another. In Ref. [13], a similar assumption through a prescribed cosine function was also

employed to describe such transition behavior.

In principle, Eq. (13) can be solved by any suitable numerical methods to obtain the electric potential/

field distribution. To have our algorithm consistent with the above LBM approach to fluid dynamics, we

follow the lattice Boltzmann framework proposed by He and Li [35] to solve the electric potential, although
other algorithms [35,36] can be more sophisticated. Thus, a new set of particle distributions hi is introduced

and their evolutions are described as
0
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. (a) Typical density distributions across an interface and (b) an example of the conductivity and permittivity from Eq. (14).
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hiðxþ ei; t þ 1Þ � hiðx; tÞ ¼ � hiðx; tÞ � �hiðx; tÞ
sh

; ð15Þ
where the equilibrium distributions �hi are
�h0 ¼
4

9
U ;

�hi ¼
1

9
U ; i ¼ 1–4;

�hi ¼
1

36
U ; i ¼ 5–8

ð16Þ
and
sh ¼ 3rþ 0:5: ð17Þ

Through a Chapman–Enskog procedure, Eq. (13) can be recovered with the electric potentialU defined as
U ¼
X
i

hi: ð18Þ
As there are two types of fluid particles in this system, the electric force FEle obtained through Eq. (9) has to

be separated into two parts and applied onto each kind of particles. Similar to Eq. (14), we divide this force

according to the density ratio as:
F
ðkÞ
Ele ¼

qðkÞ

q
FEle: ð19Þ
3. Results and discussion

Unless otherwise specified, simulations in this paper were performed over a 128 · 128 rectangular D2Q9

domain with periodic boundary conditions in both directions for fluid particles. The interaction potential

strengths were selected as g11 = g22 = 0 and g12 = g21 = 0.1. The relaxation time for both kinds of fluid par-

ticles is s(k) = 1 with a(k) = 4/9. For simplicity, we also set the molecular mass m(k) = 1. However, various

density and viscosity values can be readily obtained through adjustment of m(k) and s(k) [27,37]. When

no electric field is applied, the drop formed in the center domain at equilibrium has a radius of 11.22.

The boundary conditions for solving the electric potential U are considered not to be affected by the pres-

ence of the drop: we maintain constant potential values on the left and right sides of the domain as U1 = 127
and U2 = 0, respectively; along the top and bottom boundary sites, the potential U changes linearly with

position. The applied electric field E0 is thus E0 = (U1 � U2)/(128 � 1) = 1 in the horizontal direction, from

left to right. As in typical LBM studies, all values given here are dimensionless and can be readily mapped

to physical properties [19].

3.1. Evaluation of interfacial tension

Bubble tests were carried out to evaluate the interfacial tension for a given set of simulation parameters.
The initial density distribution for component 1 was assigned with a higher density in the center and a lower

density elsewhere; the density distribution for component 2 was initially set to be lower in the center and

higher elsewhere. After about 10,000 steps, the system reached equilibrium and the drop radius and densi-

ties inside and outside were measured. The pressure can be obtained from the densities through the follow-

ing relation [27]:
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According to the Laplace equation of capillary, the pressure difference Pin � Pout across an interface of a
2D drop with a radius r is given by
P in � P out ¼ c=r; ð21Þ

where c is the interfacial tension. Hereafter, the subscripts �in� and �out� specify the fluid phases inside or

outside the drop, respectively. Simulation results were plotted in Fig. 2(a) together with a fitted line accord-

ing to the Laplace equation (21). Clearly, the symbols from our LBM results follow Eq. (21) very well and,

from the slope of the fitted line, the interfacial tension c was found to be 0.181 ± 0.002.
By adjusting the interaction strength g12, different interfacial tension values can be obtained. Fig. 2(b)

displays our simulation results for the dependence of interfacial tension c with the interaction strength

g12. Obviously, c increases with the interaction strength g12, following a linear relationship approximately.

Similar dependence behavior was also observed by Yang et al. [38] in studying the bubble growth and

detachment using Shan–Chen�s multiphase LBM model.

3.2. Drop deformations

As an example to demonstrate the method described above, we study here the deformation behaviors of

a 2D drop being suspended in another fluid. For the present LBM approach, drop deformations can be

easily produced with different combinations of parameters �(1), �(2), r(1) and r(2). The theoretical analysis

given by Feng [39] shows that drop deformation D in response to an electric field is [39]
D ¼ d�inE2
0r0

3Sð1þ RÞ2c
; ð22Þ
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(a) Evaluation of the interfacial tension c through the Laplace equation of capillary Eq. (21) and (b) variation of the simulated

cial tension c with interaction strength g12.
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where R = rin/rout and S = �in/�out, and r0 is the initial drop radius before deformation. It should be pointed

out that this relation is analogous to that of Taylor�s analysis for 3D drops [7]. D is defined by taking the

difference between the drop�s parallel and transverse axes and divided by their sum [7,39]. d is a discrimi-

nating function expressed as [40,39]
Table

Comp

combi

�(1)

0.020

0.010

0.010

0.010

0.005

0.015

0.010

0.020

0.018
d ¼ R2 þ Rþ 1� 3S: ð23Þ
If d > 0, the drop will deform into a prolate shape with its longer axis along the electric field direction; and,

if d < 0, an oblate shape with its shorter axis along the field will result. Although the above equations were
derived for a sharp interface, this discriminating function has been found to agree well with the results from

experiments and other numerical studies [13]. Our LBM simulations also reconfirm this finding and the

results are displayed in Table 1. For all nine cases with different conductivity and permittivity ratios, we

found that the deformation D from our LBM simulations (column 6, Table 1) always has the same sign

as that of the discriminating function d, confirming the validity of d in predicting such drop deformation

behaviors. The deformation values from our simulations (column 6, Table 1) are also in good agreement

with the theoretical prediction (column 7, Table 1) when deformation is small. For large deformations,

our LBM results are generally larger than those predicted by Eq. (22). Such deviation is not surprising
as Eq. (22) was derived based on an assumption of small deformation. For larger drop deformations,

Eq. (22) typically under-estimates such deformations, as demonstrated through several other numerical

and experimental studies [8,10,41,42].

Fig. 3 displays the results of D as E0, �in, r0 and c are varied independently. In order to maintain constant

conductivity R and permittivity S ratios for the simulations in Fig. 3(d), one cannot simply fixed the param-

eters �(1), �(2), r(1) and r(2) as those in Fig. 3(a)–(c); this is due to the variation of fluid density with inter-

action strength g12 and hence the conductivity and permittivity through relation equation (14). Instead, we

adjusted these parameters �(1), �(2), r(1) and r(2) to produce the specific conductivity and permittivity values
inside and outside the drop. The straight lines are the theoretical prediction from Eq. (22). It can be seen in

Fig. 3 that, for small deformations (D 6 0.1), the simulation results are in good agreement with the those

from theory; however, for larger deformation (D > 0.1), the calculated values deviate slightly from those of

the theory. This finding is again not surprising as Eq. (22) is only expected to be valid with small deforma-

tions; and the observed deformation is typically larger than the theoretical prediction for large deforma-

tions [8,10,42].
1

arison of the discriminating function d with the deformations D from LBM (this work) and theory (Eq. (22)) with different

nations of conductivity and permittivity

�(2) r(1) r(2) d Eq. (23) D (this work) D Eq. (22)

0.010 0.10 0.05 0.95 0.042 0.047

0.010 0.20 0.10 3.79 0.207 0.184

0.020 0.10 0.10 1.48 0.309 0.305

0.020 0.10 0.05 5.27 0.683 0.504

0.010 0.10 0.05 5.27 0.295 0.252

0.010 0.10 0.10 �1.44 �0.151 �0.152

0.010 0.10 0.20 �1.27 �0.273 �0.231

0.010 0.10 0.10 �2.83 �0.313 �0.305

0.020 0.05 0.10 �0.98 �0.486 �0.354
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Fig. 3. Variation of drop deformation D with (a) electric field strength E0, (b) permittivity �, (c) the drop size r0, and (d) the reciprocal

of interfacial tension 1/c.
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3.3. Induced flow field

Another interesting feature is the fluid motion induced by an externally applied electric field. Studies

have shown that there are two types of fluid motion, depending on the sign of (R � S) [7,8,39,43], as shown

schematically in Fig. 4. If R < S, the flow is drawn in from a parallel plane (equator) and expelled along the

vertical plane (polar) relative to the electric field; if R > S, the flow direction reverses. It is interesting to

note that the flow direction is determined only by the relative quantities of R and S, and not related directly

to the drop deformation. Obviously, if R > S, the discriminating function d is always positive. However, for
R < S, the drop can deform into a prolate (d > 0) or a oblate shape (d < 0). Fig. 5(a) shows such relations

while Fig. 5(b)–(d) display three typical cases: (b) R > S, d > 0; (c) R < S, d > 0; and (d) R < S, d < 0. Drop

deformations are also shown here by the fluid density contours. Clearly, the flow fields from our LBM

simulations are in good agreement with the theoretical prediction mentioned above. The flow patterns

are also very similar to those from other numerical and experimental studies, both inside and outside

the drop [5,7,14].

To study the velocity field more quantitatively, we have also displayed the velocity profiles along the

equator and interface in Fig. 6. The symbols are those from our LBM simulations while the solid curves
are those from Feng�s analysis [39], expressed as follows:
vr;in ¼ U �½ðr=r0Þ3 � ðr=r0Þ� cos 2h;
vh;in ¼ U �½ðr=r0Þ � 2ðr=r0Þ3� sin 2h;
vr;out ¼ U �½ðr0=rÞ � ðr0=rÞ3� cos 2h;
vh;out ¼ �U �ðr0=rÞ3 sin 2h:

ð24Þ
Here vr and vh are, respectively, the radial and tangential velocities in cylindrical coordinates (r, h) with
origin at the drop center; h was measured counterclockwise from the electric field direction. U* is called
the characteristic velocity representing the maximum velocity at the drop interface as
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Fig. 4. Schematics of two types of induced flow: (a) R < S and (b) R > S. The applied electric field is in the horizontal direction.
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U � ¼ R� S

2Sð1þ RÞ2
�inE2

0r0
lin þ lout

; ð25Þ
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and l is the fluid viscosity. Clearly, the simulated velocities along the drop equator and 45� direction in

Figs. 6(a) and (b) agree well with the analytical prediction inside the drop (�1 6 r/r0 6 1). However, the
velocity outside the drop (jr/r0j > 1) deviates from that predicted by the theory. Such a deviation could have

resulted from the small simulation domain selected. As a matter of fact, the periodic boundary conditions in

our simulation requires the velocity to be zero at the boundary; while that from theoretical prediction will

reduce to zero only at an infinite distance. On the other hand, the driven electrical forces concentrate in the

interfacial region. Under such boundary and interfacial conditions, the inner fluid region in our LBM

simulations actually is very similar to that of the theoretical model in Ref. [39]; however, the outer regions

in these two cases were quite different: one finite and one infinite. Hence, it is reasonable to see in Figs. 6(a)

and (b) that the simulated and theoretical velocity profiles inside the drop agree much better than those
outside.

In Fig. 6(b), we noticed a tangential velocity jump across the fluid interface (r/r0 = ±1). This phenome-

non has also been observed by Ginzbourg using a lattice gas method [44]. In another study, Chin et al. [37]

simulated a Poiseuille flow for a layer of Fluid 1 which is sandwiched between two layers of Fluid 2 in a 2D

channel using also the Shan–Chen model. Their LBM and analytical velocity profiles were found to be in

good agreement, except a small deviation (in velocity jump) near the interfacial regions. This phenomenon

was not addressed and discussed in [37]. Report of such a phenomenon is also rare in literature and could
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deserve a more systematic study. The reason for this velocity jump is unclear and could result from the di-

rect use of the Shan–Chen model or LBM in treating interfacial regions. Nevertheless, the deviation in Fig.

6(b) occurs only in the relatively small interfacial region and appears to have no impact on our results.

Moreover, the comparison and analysis shown in Fig. 6 were not available in other numerical EHD studies

[42,14], Since the interface from a multiphase/multicomponent LBM is a diffuse region instead of a sharp
surface and, in order to study the velocity along the interface, we have assumed the interface to consist of an

iso-density contour where the least amount of mass transfer occurs [cf. Fig. 5(b)�(d)]. The velocity along

such an interface is displayed in Fig. 6(c) and was obtained by interpolation using the nearest neighbors. In

principle, the velocity profiles agree with the theoretical analysis: the radial component vr is about zero; and

the tangential component vh follows the �sin2h trend. The scatters could be caused by our interpolation

procedures and the uncertainty of the interface position as vr and vh deviate from the theoretical prediction

in a similar fashion. The above comparison and discussion with respect to the drop deformation and fluid

velocity demonstrate the validity of our LBM scheme in electrohydrodynamics studies.
4. Summary

We have implemented the lattice Boltzmann method to study electrohydrodynamics. An algorithm is

presented by incorporating electric field effects to the fluid motions. Simulations were performed to inves-

tigate deformation of a 2D drop being suspended in another fluid as a result of electric field, conductivity,

permittivity and interfacial tension effects. The deformation and flow behaviors from our simulations are in
good agreement with other studies. Given that no special treatment of fluid–fluid interfaces is required in

multiphase/ multicomponent LBM, our scheme could be an excellent alternative to electrohydrodynamics

studies than traditional computational fluid dynamics methods. The algorithm and simulation presented in

this study can also be easily extended to the more complex systems. To our knowledge, this represents the

first LBM study on multiphase electrohydrodynamics.
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The authors thank Prof. Stéphane Zaleski and the unknown Referees for valuable suggestions and

comments. This work was supported, in part, by the Canada Research Chair (CRC) Program and Natural

Sciences and Engineering Research Council of Canada (NSERC). J.Z. acknowledges the financial support

from the Alberta Ingenuity through a studentship fund.
References

[1] D.A. Saville, Annu. Rev. Fluid Mech. 29 (1997) 27.

[2] J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1 (1969) 111.

[3] G. Taylor, Proc. R. Soc. Lond. A 313 (1969) 453.

[4] A. Castellanos, A. Gonzalez, IEEE Trans. Dielectr. Electr. Insul. 5 (3) (1998) 334.

[5] J.-W. Ha, S.-M. Yang, Phys. Fluids 12 (4) (2000) 764.

[6] R.S. Allan, S.G. Mason, Proc. R. Soc. Lond. A 267 (1962) 45.

[7] G. Taylor, Proc. R. Soc. Lond. A 291 (1966) 159.

[8] S. Torza, R.G. Cox, S.G. Mason, Philos. Trans. R. Soc. Lond. 269 (1971) 259.

[9] P.A. Arp, R.T. Roister, S.G. Mason, Adv. Colloid Interface Sci. 12 (1980) 295.

[10] O. Vizika, D.A. Saville, J. Fluid Mech. 239 (1992) 1.

[11] D.A. Saville, Phys. Rev. Lett. 71 (1993) 2907.

[12] M. Trau, S. Sankaran, D.A. Saville, I.A. Aksay, Nature 374 (1995) 437.



J. Zhang, D.Y. Kwok / Journal of Computational Physics 206 (2005) 150–161 161
[13] M. Trau, S. Sankaran, D.A. Saville, I.A. Aksay, Langmuir 11 (1995) 4665.

[14] J.Q. Feng, Proc. R. Soc. Lond. A 455 (1999) 2245.

[15] J.-W. Ha, S.-M. Yang, Phys. Fluids 12 (7) (2000) 1671.

[16] S.M. Lee, D.J. Im, I.S. Kang, Phys. Fluids 12 (8) (2000) 1899.

[17] P.K. Notz, O.A. Basaran, J. Colloid Interface Sci. 213 (1999) 218.

[18] S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30 (1998) 329.

[19] S. Succi, The Lattice Boltzmann Equation, Oxford University Press, Oxford, 2001.

[20] X. Shan, H. Chen, Phys. Rev. E 47 (3) (1993) 1815.

[21] M.R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75 (5) (1995) 830.

[22] J. Zhang, B. Li, D.Y. Kwok, Phys. Rev. E 69 (2004) 032602.

[23] N.S. Martys, H. Chen, Phys. Rev. E 53 (1996) 743.

[24] S. Hou, X. Shan, Q. Zou, G.D. Doolen, W.E. Soll, J. Comput. Phys. 138 (1997) 695.

[25] B.R. Sehgal, R.R. Nourgaliev, T.N. Dinh, Prog. Nucl. Energy 34 (1999) 471.

[26] L. Fan, H. Fang, Z. Lin, Phys. Rev. E 63 (2001) 051603.

[27] Q. Kang, D. Zhang, S. Chen, Phys. Fluids 14 (9) (2002) 3203.

[28] A. Frohn, N. Roth, Dynamics of Droplets, Springer, Berlin, 2000.

[29] H. Chen, S. Chen, W.H. Matthaeus, Phys. Rev. A 45 (1992) R5339.

[30] Y.H. Qian, D. d�Humieres, P. Lallemand, Europhys. Lett. 17 (1992) 479.

[31] X. Shan, G.D. Doolen, J. Stat. Phys. 49 (1995) 2941.

[32] X. Shan, G.D. Doolen, Phys. Rev. E 54 (1996) 3614.

[33] D. Landau, E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, New York, 1960.

[34] J.S. Rowlinson, F.L. Swinton, Liquids and Liquid Mixtures, third ed., Butterworth Scientific, London, 1982.

[35] X. He, N. Li, Comput. Phys. Commum. 129 (2000) 158.

[36] S. Melchionna, S. Succi, Phys. Fluids 120 (9) (2004) 4492.

[37] J. Chin, E.S. Boek, P.V. Coveney, Philos. Trans. R. Soc. Lond. A 360 (2002) 547.

[38] Z.L. Yang, T.N. Dinh, R.R. Nougaliev, B.R. Sehgal, Int. J. Heat Mass Transfer 44 (2001) 195.

[39] J.Q. Feng, J. Colloid Interface Sci. 246 (2002) 112.

[40] P.H. Rhodes, R.S. Snyder, G.O. Roberts, J. Colloid Interface Sci. 129 (1) (1989) 78.

[41] J.-W. Ha, S.-M. Yang, J. Fluid Mech. 405 (2000) 131.

[42] J.Q. Feng, T. Scott, J. Fluid Mech. 311 (1996) 289.

[43] J.C. Baygents, N.J. Rivette, H.A. Stone, J. Fluid Mech. 368 (1998) 359.

[44] I. Ginzbourg, Boundary condition problems in lattice gas methods for single and multiple phases, Ph.D. thesis, University of Paris

VI, 1994.


	A 2D lattice Boltzmann study on electrohydrodynamic drop deformation with the leaky dielectric theory
	Introduction
	Theory and method
	Interparticle potential LBM model for multicomponent fluid
	Leaky dielectric theory with diffuse interfaces
	Implementing LBM to EHD

	Results and discussion
	Evaluation of interfacial tension
	Drop deformations
	Induced flow field

	Summary
	Acknowledgments
	References


